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ABSTRACT 

By integrating digital twin technology with artificial intelligence (AI) and machine learning (ML), solar 
energy management systems have the potential to accurately predict future energy generation. This 
project investigates the design and implementation of an AI-powered digital twin model for solar 
panel arrays located around Flinders University’s Bedford Park and Sturt Campuses. This model is 
designed to forecast the power output based on historical generation and irradiance data taken from 
sensors located on the arrays, and weather forecast variables both current and historical such as 
temperature, daylight hours, and weather conditions. Several AI and ML algorithms were proposed 
for the model to test if the model can capture the complex, nonlinear relationships between 
environmental factors and solar generation. By data processing and simulation, the model provides 
predictive insights that can assist with operational planning, energy optimisation, and grid integration 
enhancement. This study evaluates the accuracy and reliability of the digital twin forecasts through 
the comparison of different AI and ML models, different locations of the arrays, and comparison with 
predictions on different days with historical solar data. This study demonstrates the potential of AI-
powered digital twins to improve the reliability and efficiency of solar energy systems. These findings 
contribute to the increase knowledge of predictive digital twin applications in renewable energy 
management systems and highlight opportunities for future development of intelligent energy 
forecasting systems.  
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ACADEMIC INTEGRITY AND AI 

Students are expected to be aware of and understand Academic Integrity through all areas of their 

scholarship and Project topics are no exception. The main principles of student academic integrity 

at Flinders University are: 

• undertaking your academic studies responsibly and honestly 

• producing your own work and not passing off the work of other people as your own 

• adequately acknowledging the work of other people when you include it in your work 

• not falsifying any work 

• using only authorised resources during assessment tasks 

It is important to understand all the common failures in meeting academic integrity requirements, 

particularly plagiarism, misrepresentation, fabrication, contract cheating, and misusing artificial 

intelligence (AI) tools. Before commencing your studies, it is essential that you familiarise yourself 

with academic integrity at Flinders University and Academic Integrity Policy: 

Academic Integrity: https://students.flinders.edu.au/my-course/academic-integrity 

The following is information on two specific parts of academic integrity: 

Reusing your own work: Normally you cannot re-use an assignment or piece of work in the same 

topic or between topics without permission from the topic coordinator. The design of your 

assessments is to scaffold your activities so that they contribute to the production of a Thesis. 

Because of the assessment design across Research Methods and Project topics you have 

expressed permission to re-use original work produced through your assessments. If you are 

repeating Research Methods and Project topics you must seek approval from the topic 

coordinators to use past work, even if completing the same project. 

Artificial Intelligence: Unless otherwise stated in an assessment, the only acceptable use of AI in 

your Project topics is for report structure planning, language and grammar support, using study 

support prompts, and for revision and preparation for presentation-based assessments. You are 

not permitted to use AI as a source and must acknowledge where and how it was used by 

providing a copy of the original draft, the AI generated edited draft and the chat history with AI 

chatbot outlining the instructions and commands used to generate the final version. This can be 

presented in the thesis as an appendix with a disclaimer clearly provided by the student in the 

appropriate section in the thesis. The Topic Learning Outcomes have a focus on understanding, 

developing specialist knowledge, critical thinking and synthesis, responding to query, complex 

argument, and intellectual independence, all of which you need to demonstrate, that precludes 

https://students.flinders.edu.au/my-course/academic-integrity
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more extended use of AI. The Viva Voce is our assessment tool to confirm your knowledge, 

understanding, and achievement. More information about the use of AI can be found at: 

Using AI tools for study: https://library.flinders.edu.au/students/ai  

 

  

https://library.flinders.edu.au/students/ai
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1. INTRODUCTION 

1.1. Overview 

With the global transition from fossil fuels to renewable energy sources (RESs), solar has become 

one of the fastest growing energy sources (Arafet & Berlanga, 2021). However, solar is inherently 

intermittent at generating power, and requires robust understanding of energy patterns, forecasts, 

demand, and grid management. Traditional energy management systems (EMS) such as rule-

based controls, data loggers, and Supervisory Control and Data Acquisition (SCADA) lack the 

intelligence and adaptability required for modern decentralised energy systems. This has seen 

growing research in intelligent systems that assist with predictions, responsiveness, monitoring and 

decision-making. 

In response, there is an increasing interest in integrating artificial intelligence (AI) and machine 

learning (ML) with digital twin (DT) technology to create an AI powered Digital Twin System (DTS). 

AI-enhanced DTs are powerful tools that can assist with predictive maintenance, energy output 

predictions, forecasting, diagnostics, control, and decision-making. 

This thesis explores how combining AI and ML with DT technology can address these challenges 

in forecasting by developing a dynamic data-driven model capable of predicting solar generation 

performance. 

1.2. Background and Significance 

A Digital Twin (DT) is a powerful tool that virtually represents a physical asset, system or process, 

by continuously synchronising with real-world data to enable forecasting, optimisation and 

monitoring. In the renewable energy sector, a DT can model the operational behaviour and 

environmental influences of an array of solar panels, by acting as intelligent cyber-physical 

systems. 

In parallel, AI and ML algorithms such as Random Forest (RF), Neural Networks (NN), and Long 

Short-Term Memory (LSTM) have proven their capability of learning complex nonlinear 

relationships between weather patterns and solar energy output, making them powerful tools for 

forecasting. Operational efficiency and energy management could be improved by integrating 

these models into a DT framework to create a predictive and adaptive system. 

The significance of this project is to provide an insight into the spatial reliability of an AI-based solar 

forecasting framework. This project forms part of a larger DT ecosystem for managing solar arrays 

located around Flinders University’s Bedford Park and Sturt campuses, by developing a 

forecasting layer that predicts the solar generation for three different sites. By comparing the 
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performance across these sites with topographical differences, this project follows a practical and 

scalable approach. 

1.3. Key Definitions 

• Artificial Intelligence (AI): Computational methods that enable computer systems to perform 

tasks like decision-making, and problem solving. 

• Digital Twin (DT): A virtual replica of a physical asset that mirrors the state, behaviour, and 

behaviour of that particular asset in real time. 

• Machine Learning (ML): A field of study in AI where systems learn and improve from data 

without being explicitly programmed. 

• Solar Forecasting: Using meteorological and operational data to predict the solar power 

generation over a specified horizon (e.g., hours or days ahead). 

1.4. Problem Statement 

Due to variability of weather and environmental conditions, accurately forecasting solar energy 

generation is challenging. Traditional methods often fail to capture complex weather and 

environmental dynamics leading to inefficient energy management and poor planning. With the 

growing interest in AI-powered DTs, efficient energy management, improved forecast accuracy, 

and grid stability can be achieved by integrating real-time data with predictive ML techniques. 

While current literature highlights the concept of DTs and their potential, limited studies have 

implemented and validated DTs for forecasting solar energy generation, particularly across multiple 

solar arrays.  

This project investigates how AI and ML techniques can enhance solar energy generation 

predictions to provide a more reliable and efficient prediction for renewable energy management by 

addressing the research question: How can AI Digital Twin Technology improve the accuracy of 

solar energy generation forecasting? 

1.5. Project Aim and Objectives 

1.5.1. Project Aim 

To design and implement a solar forecasting framework that forms the predictive core of a digital 

twin capable of managing solar energy systems. 

1.5.2. Project Objectives 

• To collect and preprocess historical solar and irradiance data from three sites around 

Flinders University’s Bedford Park and Sturt campuses: Information, Science and 

Technology (IST), Drama, and Sturt East Buildings. 

• To collect and preprocess historical and real-world weather data from WeatherAPI. 
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• To develop four AI/ML algorithms: Random Forest (RF), Extreme Gradient Boosting 

(XGBoost), Multilayer Perceptron Neural Network (MLPNN), and Long Short-Term Memory 

(LSTM).  

• To train and validate these four algorithms for seven-day solar generation forecasting. 

• To compare the performance of each model using RMSE, R2, and MAE metrics. 

• To identify the impact of environmental and topographical influences across the three sites. 

• To outline integration pathways for future work and embedding this framework into the 

larger digital twin system (DTS). 

1.6. Thesis Statement 

This thesis provides the groundwork for providing an effective and scalable approach for short-term 

solar energy prediction, by integrating AI/ML algorithms into a DT framework. Using a combination 

of ML techniques and synchronised weather and solar data, the proposed system enhances 

forecasting accuracy and establishes a foundation for future real-time, intelligent energy 

management across distributed solar networks. 

1.7. Thesis Structure 

This thesis is structured into six chapters beginning with Chapter 1 introducing the research 

context, motivations, and objectives. Chapter 2 is a review on the existing literature on the concept 

of DTs, the role AI acts in DT technology, and DT applications in renewable energy forecasting. 

Chapter 3 outlines the methodology and system design followed to complete this project, including 

data collection, processing, model selection, training and validation, evaluating results, and 

outputting results. Chapter 4 presents the experiment setup, evaluation metrics, and results 

achieved from the four algorithms across the models developed for all three sites. Chapter 5 

discusses the results comparing them to existing studies, highlighting key finding and limitations. 

Chapter 6 concludes this project and lists some suggested directions for future research and work.  
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2. LITERATURE REVIEW 

2.1. Overview 

Recently there has been growing interest in intelligent energy management systems (EMS) to 

assist with predictions, responsiveness, monitoring, and decision-making. In response, there is an 

increasing interest in integrating artificial intelligence (AI) with digital twin (DT) technology to create 

an AI-enhanced digital twin system (DTS). AI-enhanced DTs are powerful tools that assist with 

predictive maintenance, energy output predictions, forecasting, diagnostics, control, and decision-

making. 

This literature review examines the theoretical foundations and recent developments in DT 

technology specifically focussing on implementing AI and ML with this technology, and why DTs 

can be used for solar forecasting. The objective is to identify what is a DT, identify the strengths 

and limitations of existing forecasting approaches, and outline the current research gaps and 

challenges, establishing the conceptual basis for present DT models. 

2.2. Concept of Digital Twins 

Although DT technology has gained popularity over the past decade, the concept of DTs is a lot 

older with Micheal Grieves proposing a three-component DT for Product Lifecycle Management at 

the University of Michigan in 2002 (Grieves, 2016). A similar concept known as ‘Mirror Worlds’ was 

mentioned earlier in 1991 by David Gelernter, where the physical world inputs information to a 

software model to mimic reality (Gelernter, 1993). Rasheed et. al. (2020), defines DTs as “a virtual 

representation of a physical asset enabled through data and simulators for real-time prediction, 

optimisation, monitoring, controlling and improved decision making”. Initially emerging from the 

aerospace industry, DTs have evolved to be deployed in a wide range of disciplines such as, 

agriculture, healthcare, manufacturing, construction, energy, and sustainability. 

DTs consist of five components: physical assets, virtual counterpart, data streams, bidirectional 

communication framework, and analytic services (Jiang et al., 2021). They are typically powered 

by either multi-physics, multi-scale or hybrid-system models (Jiang et al., 2021). DTs continuously 

update the virtual model by collecting real-time data from Internet of Things (IoT) sensors 

embedded on the physical asset. The virtual model uses this data to mirror the behaviour, 

performance and state of the physical asset.  

Recent studies have indicated DTs improve the performance conditions, optimise physical assets, 

increase the life of RESs, lower repair costs, and decrease downtime (Attaran & Celik, 2023; 

Sharma et al., 2024). These benefits make them especially useful for solar panel forecasting and 
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energy management. For example, a DT for solar panels can use irradiance and weather data to 

adjust the performance and energy generation. 

2.3. The Role of Artificial Intelligence in Digital Twins 

In a digital twin system (DTS), AI can contribute to many roles including the six broader roles 

known as AI-DTS (AI for Digital Twin Systems) as indicated in the DTS Architecture (figure 1). 

 

Figure 1 – Digital twin System Structural Architecture showcasing different AI roles (Emmet-Streib, 
2023). 

Table 1 – The six different AI-DTS techniques and their roles in the DTS (Emmet-Streib, 2023). 

AI-DTS Techniques Role in the DTS Significance to the DTS 

1. AI: Optimization 

(Model Creation) 

A process that involves the 

digital twin using data and 

parameters to estimate and 

assist with creating the 

model. 

Allows the simulation to capture 

the essential features of the 

physical entity to help create the 

model. 

2. AI: Optimization 

(Model Updating) 

Ensures the DT is 

synchronised with its 

physical counterpart whilst 

in operation. 

Involves regularly updating the 

data and assets of the DT.   

3. AI: Generative 

Modelling 

Uses ML models like 

generative adversarial 

Contributes to the simulation 

model by learning underlying 
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networks (GANs) to 

generate data containing 

characteristics from large-

scale data. 

patterns and distribution of data 

to help generate new or similar 

data from the DT. 

4. AI: Data Analytics Examines datasets to 

identify any patterns and 

trends. 

Allows the model to make 

appropriate decisions and solve 

problems. 

5. AI: Predictive Analytics Using statistical algorithms 

and ML to predict future 

outcomes. 

Allows for future predictions by 

identifying patterns in historical 

data. 

6. AI: Decision Making Making decisions and 

summarises all results 

achieved up to this point. 

Can integrate everything together 

and produce quantitative or 

qualitative summaries of the DTS. 

 

In solar forecasting, integrating these six AI-DTS techniques can enhance the capabilities of DT 

models, enabling advanced analytics, intelligent forecasting and real-time decision-making. For 

instance, in solar energy systems AI algorithms can assist with processing diverse data sources 

such as irradiance, and weather forecasts to predict future PV output. 

Many machine learning (ML), and deep learning (DL) techniques can be used to assist with 

forecasting in energy management. Researchers have had successful performance in using 

ensemble methods such as Random Forest (RF), and Extreme Gradient Booster (XGBoost) in 

forecasting energy output in photovoltaic systems (Abdou & Memon, 2023; Didavi et al., 2021). RF 

is easy to use and offers robustness against overfitting, whereas XGBoost offers higher accuracy 

and efficiency in handling large datasets. Choi et. al. (2018 as cited in Wang et. al., 2023) suggests 

LSTM to assist with power load forecasting like predicting the power load data. LSTM also has the 

benefit of capturing long-term dependencies in data, enabling more accurate predictions. Huang et 

al. (2020) demonstrated success in achieving good performance with Multilayer Perceptron (MLP) 

compared to LSTM. 

Integrating AI with DT technology enables the model to continuously learn and adapt based on 

new data streams. This adaptive intelligence transforms the twin from static to a self-updating 

predictive system, allowing dynamic optimisation in energy management, and improve reliability 

and resilience against environmental fluctuations. 

2.4. Solar Forecasting Techniques 

2.4.1. Current Solar Forecasting Techniques 
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Current solar forecasting techniques include satellite images, all-sky imagers (ASIs), and 

Numerical Weather Prediction (NWP) models. Satellite images determine cloud pattern using 

visible and infrared images taken from satellite-based sensors flying overhead (Sobri et al., 2018). 

ASIs are digital cameras that capture images with a 180-degree field of view, enabling the entire 

sky from one horizon to the other to be captured (Barhmi et al., 2024). ASIs detect clouds in the 

pictures using image-processing techniques and determining the Cloud Motion Vectors by lliking 

the clouds within consecutive images. Using these vectors, future cloud positions are determined, 

and future irradiance is estimated accordingly. Historically, NWP models have been the primary 

technique for forecasting applications to predict variables such as surface solar irradiance, 

temperature, humidity, wind, and probability of precipitation (Sobri et al., 2018). However, for solar 

forecasting they require statistical methods to correct errors and blend the output for multiple 

models (Sobri et al., 2018). 

2.4.2. Current Techniques vs Digital Twins 

Although current forecasting techniques and DTs can be used in energy management for 

monitoring, controlling, and optimising power generation and distributions, DTs offer the following 

advantages compared to techniques like satellite images or NWP: 

1. Real-Time Adaptability: AI DTs have dynamic response time to constant changing 

environmental and operational conditions. 

2. Predictive Maintenance: DTs detect early signs of faults and send recommendations to 

the virtual machine to complete regular maintenance or repairs, reducing system downtime 

and costs. 

3. System-Level Optimisation: DTs optimise and can communicate through interconnected 

components (e.g., generation, loads, wind speed, solar irradiance, and storage). 

4. Simulation and Decision-Making: DTs simulate future predictions by using what-if 

scenarios to enable proactive energy management. 

Soori et. al. (2023) mentions DTs have the capability to help maximise the value of renewable 

energy systems, reduce costs, and minimise downtime. 

2.4.3. Applications of Digital Twins in Solar Systems 

Due to their ability to model, optimise and simulate a physical entity in real-time, AI DTs can be 

deployed in many fields including solar and wind turbine energy systems. DT technology can allow 

considerable planning and designing, energy forecasting, reliability analysis, fault detection, 

predictive monitoring, and intelligent maintenance transforming EMSs. These application areas 

allow for EMSs to be more reliable and efficient. Table 2 outlines some of the potential uses for 

DTs in managing solar systems. 

Table 2 – Various applications of DT technology in Solar EMS (Fahim et al., 2022). 
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Application Potential Uses 

Plan and Design • Solar system design (Massel et. al., 2021). 

• Develop plans and assist with operations. 

• Plan and predict energy consumptions and supply 

(Kavousi-Fard et. al., 2024) 

Energy Forecasting • Use of optimal planning and operating, real-time 

control and remote monitoring to power output 

(Fahim et. al., 2022). 

Reliability Analysis • Improve performance using real-time data 

monitoring for reliable analysis. (Wang et. al., 2021). 

Management and Monitoring • Optimal management of solar panels. 

Fault Detection • Improve stability and reliability of solar panels using 

fault detection. 

Security and Resiliency • Real-time security protection (Danilczyk et. al., 2019) 

• Enhance security. 

• Detect cyber-attacks (Danilczyk et. al., 2019) 

• Protect the grid from natural outages (Danilczyk et. 

al., 2019) 

Predictive Maintenance and 

Condition Monitoring 

• Enhance reliability 

• Predict faults and failures 

• Decrease maintenance costs 

• Remote monitoring and control 

• Optimise performance 

 

2.5. Integration Strategies 

Integrating AI-enhanced DTS into existing EMS shifts the systems from a conventional rule-based 

management system to a predictive, self-optimising system. This integration assists with solar 

forecasting by using real-time data from sensors and management systems to create a dynamic, 

evolving simulation that predicts future outcomes more accurately than traditional methods. The 

primary layers common across all integrations of DTS into EMS include:  

1. Physical Asset: The physical object used to generate the DT (e.g., solar panels). 

2. Data Extraction Layer: Using IoT enabled sensors embedded onto the solar panel arrays 

to capture parameters important for energy management such as irradiance, temperature, 

conditions, cloud cover. There parameters are then transmitted to the virtual entity (DT) for 

analysis and decision making.   
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3. Intelligent Modelling Layer: Using AI, ML, and DL algorithms such as LSTM to assist with 

power load forecasting and predict power load data (Choi et. al., 2018 as cited in Wang et. 

al., 2023). This layer is where the data is interpreted by AI for predictive accuracy and 

adaptability for decisions made. 

4. Design, Control and Execution Layer: Using the output of the virtual model, real-time 

decisions are made, and strategies are executed autonomously. Some decisions that the 

DT can make include dynamic load balancing, dispatch energy storage, predictive 

maintenance, recommend maintenance schedules, and synchronise assets connected to 

the grid. Model Predictive Control (MPC) and Reinforcement Learning (RL) can be 

embedded into the DTS to assist with system-level optimisation. 

2.6. Research Gaps and Challenges 

Although DTs have the potential to transform EMS and forecasting using AI algorithms, ML, DL, 

and optimisation frameworks there are still some current research gaps and technical challenges 

with this technology: 

1. Real-Time AI Inference: Current literature use DT models that combine SCADA and AI-DT 

technology or offline batch-trained models. This often means that real-time inference using 

live sponsors are unexplored. This lack of inference is mostly due to DTs in the energy 

sector using non-standard frameworks and architecture as most developers use their own 

architecture models. 

2. Data Quality and Availability: DTS rely on real-time data from sensors and IoT devices, 

which can produce low quality data if coverage is inconsistent or if there’s environmental 

noise. This can lead to missing data, and limitations in data quality and availability 

impacting the performance of the AI techniques in the virtual entity. 

3. Complex Computational Functions: Any AI DTs using deep learning models and real-

time forecasting are intense and demand robust computational resources. These systems 

often require efficient architecture like physics-models or hybrid cloud-edge configurations 

that are not standardised. 

4. Tool-Specific Implementations: There is a lack of academic works that evaluate the use 

of DT platforms like XMPro for AI-powered DTs in the renewable energy sector. 

These gaps highlight the need for robust, adaptive, and explainable DTS for the renewable 

energy sector. Given these gaps, this project develops and evaluates the capability of AI-

enhanced DTs by creating forecasting models designed to be the core function of a broader DT 

project. These models are designed to use real solar generation and irradiance data collected 

from distinct sites at Flinders University via the university’s Building Management System 

(BMS). 
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2.7. Summary 

This chapter analysed the concept of DTs from its origin to the current state of implementing AI 

with DT technology in solar energy systems. This review highlighted the significant potential of 

combining these two paradigms for improved forecasting. The literature indicates strong progress 

in individual domains such as DTs for power load forecasting but showed limited work outside of 

the scope. 

The next chapter outlines the methodology adopted for this project, which is based on some 

concepts outlined in this chapter.  
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3. METHODS 

3.1. Overview 

This chapter outlines the methodology followed to design and implement a model to predict the 

solar generation for the next seven days as part of a broader digital twin project for managing the 

solar system at Flinders University’s Bedford Park and Sturt Campuses. This model follows data-

driven design principles like ones that appear in Amasyali et al. (2018) and Seyedzadeh et al. 

(2020). Historical solar generation, irradiance and weather data, and collecting real-time weather 

inputs via an Application Programming Interface (API) were used to train and evaluate four 

predictive machine learning (ML) algorithms: Random Forest (RF), Extreme Gradient Booster 

(XGBoost), Multilayer Perceptron Neural Network (MLPNN), and Long Short-Term Memory 

(LSTM). 

Each step was performed to ensure the methodology and results are reproducible and the derived 

from existing digital twin (DT) system architectures. Figure 2 shows the final experimental 

procedure workflow followed in the project to make sure the model can serve as a practical 

forecasting and decision-making support tool. 

 

Figure 2 – Experimental Procedure workflow. 

1. Data Acquisition: 

Solar and weather data collected and updated daily to ensure predictions were made using 

the most recent information. 

2. Data Preprocessing: 

Datasets prepared for training with times aligned, interpolated, and resampled. Outliers 

corrected and normalised features. 

3. Model Selection: 

Chose the three most appropriate models for initial training purposes with plans to expand 

into LSTM at a future stage. 

4. Training and Validation: 

Datasets split chronologically into training and testing sets. Performed hyperparameter 

tuning to balance bias, variance, and computational efficiency. 

5. Evaluation: 

a) RMSE (Root Mean Square Error) – quantify average error magnitude. 

b) R2 (Coefficient of Determination) – how well predictions explain variance in observed 

data. 
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6. Output: 

Each model produced 24-hour rolling forecast of predicted solar generation at 15-minute 

intervals, 7-day rolling forecasts at hourly intervals, and pick two random days to compare 

predicted generation vs actual to evaluate model’s accuracy. 

3.2. System Architecture and Design 

3.2.1. Architecture 

Loosely based on architecture designs proposed by Emmet-Streib (2023) and essential 

components listed by Khajavi et al. (2019), the system architecture for this project comprised of a 

physical layer, data and integration layer, and virtual layer. This architecture was chosen due to its 

seamless interaction between real-world data, AI analytics, and virtual forecasting modules, 

creating a continuously updating framework. Figure 3 shows the general system architecture 

created for this project, demonstrating how it integrates data to generate future predictions.  

 

Figure 3 – System Architecture Diagram 

3.2.2. Physical Layer 

The physical layer represents the physical assets of the solar system, which in this case is the 

solar photovoltaic (PV) panels (figure 4) and their corresponding inverters, which convert 

generated DC power to AC output. Sensors are installed at each site to measure solar irradiance, 

panel temperature, and send generation data to the university’s Building Management System 

(BMS) (figure 5). This layer is responsible for the continuous collection of operational and 

environment data fed into the DT if there are any faults or failures the DT detects that no data is 

collected and send the user a warning during updates. 
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Figure 4 – Solar panels at Flinders University Bedford Park campus (News Desk Flinders University, 
2018). 

 

Figure 5 – The campus buildings solar generation page of the BMS 

3.2.3. Data and Integration Layer 

This layer is where the data is collected from the primary sources for historical and real-time data. 

Although data acquisition and preprocessing are part of the virtual assets, it is performed as part of 

this layer to make sure data is synchronised and features are extracted. Due to the datasets using 

different timestamps and Adelaide having two time zones throughout the year (i.e., Australia 

Central Standard Time (ACST) and Australia Central Daylight Time (ACDT)) the model handles 

timestamp standardisation, as well as missing value imputation. The scripts also merge the 

datasets using “asof” temporal alignment, to find any matches in times and dates between the 

three datasets. Each dataset is passed in as a comma-separated value (CSV) file. 
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3.2.4. Virtual Layer 

This layer represents the forecasting engine, where the AI-driven model simulates and predicts 

solar generation for the next seven days. In this layer ML algorithms are tested to produce short 

term (up to seven days) generation forecasts. The virtual model acts as most of the virtual asset 

and the core component that makes the DT functional. This asset allows for the expansion into 

what-if analysis and predictive management of energy flow for future development stages. 

3.3. Data Acquisition 

3.3.1. Data Sources 

Three structured datasets were acquired for this project (table 3): 

Table 3 – Data sources and relevant inputs. 
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3.3.2. Location and Duration 
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The data corresponds to three sites located at Flinders University’s Bedford Park and Sturt 

campuses all located in the suburb of Bedford Park, South Australia. Relevant weather data and 

time zones were gathered by coding the latitude and longitude coordinates for Bedford Park when 

collecting from WeatherAPI. Historical records span September 2024 – October 2025, with the 

model testing performed using a January 2025 – October 2025 holdout period for validation. Data 

handling and analysis was conducted between August 2025 and October 2025. 

3.3.3. Software Tools and Python Libraries 

All initial preprocessing, training, and evaluation were conducted in Python 3.13 using Google 

Collab. These codes were initially run manually, before being automated to run autonomously and 

converted to Python Scripts and ran using Python shells (IDLE). The following libraries were used 

in the codes: 

• NumPy, pandas: For data preprocessing, feature engineering, manipulation and 

transformation. 

• XGBoost, scikit-learn and TensorFlow/Keras: For implementing ML and DL algorithms. 

• Matplotlib and Seaborn: For performance visualisation, correlation analysis and 

presentation of results. 

Reproducibility was maintained keeping duplicates of codes on different machines and a USB with 

a Readme.txt file created with instructions on setting up the experiment and running the code. 

3.4. Data Preprocessing 

3.4.1. Timestamp Standardisation 

Due to variation in timestamps in the CSV files, and South Australia using two different time zones 

throughout the year because of daylight savings, timestamps were cleaned using Regular 

Expression (RegEx). RegEx extracts and matches the timestamp formats to standardise the 

timestamps into DD-MMM-YY HH:MM:SS AM/PM ACDT/ACST format. This ensured temporal 

alignment across data sources and the timestamp formats in the output are aligned with the data. 

3.4.2. Data Cleaning and Resampling 

Any records with a missing timestamp were dropped, with forward fill interpolation being used to fill 

time gaps. Forward fill fills in any missing values by propagating the last known values forward. All 

data was resampled to hourly intervals to match the weather data frequency. All duplicates were 

removed to prevent sampling bias. 

3.4.3. Merging Datasets 

The three datasets used for the model (irradiance data, weather data, and generation data) were 

merged using the pandas merge_asof function. This function performs as “asof” merge, which 
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matches to the nearest key compared to standard left join which requires exact keys, this is 

particularly handy for time series data and other ordered datasets. This merge created a unified 

dataset for model training. 

3.5. Feature Engineering 

3.5.1. Temporal Features 

Pyton’s datetime module was used to extract time-based features such as hour of day, day of year, 

and weekday for timestamp data and capture diurnal and seasonal variability in solar irradiance. 

These features enabled the model to learn cyclical generation patterns linked to solar positions. 

3.5.2. Seasonal Encoding 

Using one-hot encoding via pandas.get_dummies(), each observation was categorised into one of 

four seasons (summer, autumn, winter, and spring) based on the month recorded. This allowed for 

the model to detect season-dependent changes such as temperature and precipitation that impact 

energy generation without imposing ordinal relationships. 

3.5.3. Sunrise and Sunset Conversion 

To maintain consistency with all other temporal features, the times recorded for sunrise and sunset 

were converted into numerical formats (minutes since midnight). Roughly less than 2% of missing 

entries were found, so these were imputed using the column mean to preserve statistical integrity 

and prevent model bias. 

3.5.4. Feature Selection 

Following correlation and mutual information analysis against the targe variable (solar generation 

non-numeric and low importance columns (e.g., weather conditions) were removed. The final 

features were selected based on relevance, noise reduction, and improved training efficiency. 

3.6. Predictive Model Configuration 

3.6.1. Algorithms Selected 

Four algorithms were selected based on demonstrating different algorithmic paradigms for 

regressions and reflecting similar works by Yalçin et al. (2023), Sehrawat et al. (2023), and Al-

Isawi et al. (2023). These models enable comparative evaluation to be conducted between 

classical and deep learning methods: 

• Random Forest (RF): An ensemble tree-based learner combining multiple decision trees 

to produce an accurate and stable model. RF is common in tasks like classification and 

regression as it offers interpretability and robustness. 
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• XGBoost: An open-source ML library that uses a parallelised, regularised gradient-boosted 

framework commonly used for tabular data. XGBoost as the benefit of superior error 

reduction. 

• MLPNN: A feedforward neural network (NN) that consists of three layers commonly used 

for nonlinear relationships. 

• LSTM: A recurrent NN suited for temporal dependencies in time-series forecasting. 

3.6.2. Data Partitioning and Normalisation 

After the datasets were merged the data was split into 80% training and 20% testing subsets using 

random seed of 42 for reproducibility. StandardScaler was used to standardised features and 

ensure equal weighting and stable gradient descent. 

In the LSTM framework, a sliding window approach was used to preserve temporal dependencies, 

and the data was reshaped into 3D arrays (samples, timesteps, features). This allowed the model 

to learn from historical sequences of generation and weather data. 

3.6.3. Model Configuration 

• RF: 100 estimators, random_state = 42 

• XGBoost: 100 trees, max_depth = 6, learning rate = 0.1, subsample = 0.8 

• MLPNN: Two hidden layers (128 and 64 neurons) with ReLU activation Adam optimiser (lr 

= 0.001), dropout = 0.2, 100 epochs. 

• LSTM: One LSTM layer with 50 units followed by a dense output layer, Adam optimiser, 50 

epochs, batch size = 32. 

3.6.4. Training and Validation 

Models were trained using RMSE (Root Mean Square Error), R2 (Coefficient of Determination), 

and Mean Squared Error (MSE) loss with training and validation being conducted on the 

designated subsets, ensuring no data were leaked. Training curves were monitored to detect 

overfitting, while ensemble algorithms used internal cross-validation. Outputs were stored for 

comparative evaluation based on consistent error metrics. 

3.6.5. Forecasting and Visualisation 

Two forecasts were produced for each model: 

1. Accuracy Validation: Random samples of two past weeks were selected from the dataset 

to validate the accuracy of the algorithms be comparing the predicted vs the actual PV 

generation. 

2. Future Forecasting: Using the current data as the starting point, a seven-day hourly 

forecast was generated based on historical solar trends and average diurnal weather 
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patterns. The Astral library assisted with computing the sunrise and sunset times taken 

from the weather data, allowing the model to automatically nullify predictions during 

nighttime hours. 

For the manual test versions interactive Plotly visualisations were developed to display the next 

seven-day forecast, and the predicted vs actual generation graphs. This allowed for evaluations to 

be more dynamic when looking into model accuracy and trends. However, this was changed to 

Matplotlib plots in the Automated versions due to limitations with the local machine where the 

automated scripts are run from. 

3.7. Evaluation Metrics 

Performance logs were kept assessing forecasting accuracy and logging: 

• RMSE (Root Mean Square Error): Measures the magnitude of large prediction errors. 

• MAE (Mean Absolute Error): Captures the average absolute deviation. 

• R2 (Coefficient of Determination): Indicates how well the model predictions explain the 

observed variance. 

These metrics evaluate the stability, precision, and explanatory strength. 

3.8. Planning Items 

3.8.1. Safety Considerations 

Table 4 – Safety Considerations Assessment. 

No. Consideration Risk Mitigation 

1 Data and Privacy Unauthorised access could 

compromise infrastructure. 

Secure communication 

protocols, data encryption, 

authentication mechanisms 

and access control policies 

were implemented to protect 

data and prevent breaches. 

2 System Malfunction 

or False 

Recommendations 

Inaccurate predictions could lead 

to incorrect operational decisions 

(e.g., underutilised solar input, 

battery overcharging) 

Fail-safe mechanisms, and 

continuous model validation 

were implemented. A human 

also verified critical decision 

pathways. 

 

3.8.2. Project Risk Assessment 

Table 5 – Project Risk Assessment. 
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Risk Likelihood Impact Mitigation 

Forecast API Failure Medium High Cach recent data or fallback to historical 

data. 

AI Model Under 

Performance 

Medium Medium Iterative training, tune the model, introduce 

other neural network models if required. 

Sensor Malfunction Medium Medium Calibrate protocols and replace/remove 

malfunctioned sensor and declare panel 

redundant. 

 

3.8.3. Project Timeline 

The project was structured over a 10-month period, table 3 outlines the key milestones. 

Table 6 – Key Milestones throughout the project. 

Weeks Milestone(s) 

1-8 Literature Review, Proposal Seminal, XMPro Academy, Software Familiarisation. 

8-15 Methodology, XMPro Academy Course Completion, Retrieve Solar Data, Begin 

Designing and Implementing Data Stream with Solar Data 

16-30 Setup Final Python Scripts, Setup AI Algorithms, Collect Weather Data, Analyse 

Results, Produce Results. 

31-40 Test Scripts, Complete Final Scripts, Log Issues and Bugs, Resolve Issues and Bugs. 

 

To manage progress, dependencies and indicate milestones a Gantt chart was developed (Appendix 

A). 

3.8.4. Quality Management 

To ensure model reliability and consistent data: 

• Performance logs were kept to detect any drift in performance. 

• Model outputs plotted on graphs to detect any difference as day progress. 

3.9. Critical Assumptions 

This project relies on several critical assumptions to properly develop and evaluate the feasibility of 

AI-driven DT technology for forecasting solar generation. The first assumption is that it is assumed 

that all sensor data collected form the solar arrays are time synchronised, accurately calibrated, 
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and free from any major measurement bias. Another assumption is that the weather datasets, 

including temperature, sunrise and sunset times, cloud cover, and humidity represent on-site 

conditions based on the recorded conditions for Bedford Park, South Australia with a forecast 

accuracy within ± 5%. 

It is also assumed that all data preprocessing pipelines effectively mitigate missing or noisy values, 

ensuring consistent input quality for training and validation. Due to all three sites being within the 

same geographical region. Additionally, it is assumed that the digital framework can be 

implemented into a streaming environment in the future with negligible data latency and near real-

time performance. 

These critical assumptions establish the conditions to consider when interpreting the results. Any 

deviation from these conditions such as sensor drift or inaccurate forecasts may impact the 

reliability of the predictions and limit the generalisability of the findings. 

3.10. Methodology Limitations 

Although the methodology was designed to be a robust framework for developing the core of a DT 

that can forecast solar generation, several limitations were encountered during implementation. 

One primary constraint was the final performance of the LSTM framework. Due to the time 

availability required for hyperparameter tuning, the model’s complexity, and iterative nature of 

sequence learning, further optimisation was not fully completed within the project timeframe. This 

led to optimisation tasks like adjusting the learning rates, lookback windows, and hidden layer 

dimensions not being implemented. Consequently, the predictive accuracy of the LSTM framework 

may not accurately represent the achievable performance of LSTM. 

Another constraint was data quality and temporal resolution. Minor gaps and varying sampling 

frequencies were present in some of the solar and weather data, requiring interpolation and 

resampling. Consequently, this may have introduced smoothing effects or minor loss of high-

frequency dynamics. Standardisation of all data to hourly intervals and applying appropriate 

preprocessing techniques help to mitigate these limitations. But some precision loss is 

acknowledged. 

Computational constraints restricted the ability to train model on longer historical windows and 

perform extensive cross-validation runs. Using the available resources, the methodology was 

updated to a balance thoroughness with practical feasibility. 

3.11. Summary 

This methodology outlined a data-driven approach for forecasting solar PV generation as part of 

the functional component of a broader DTS. By systematically processing data, feature 
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engineering and comparative modelling using RF, XGBoost, MLPNN, and LSTM, this project 

achieved a reliable foundation for predictive energy management. Whilst limitations in time, 

computation and integration do exist, the methodology demonstrates scalability and adaptability for 

future deployment within a DT environment.  
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4. RESULTS 

4.1. Overview 

This chapter presents the results obtained from the solar forecasting models developed for the 

larger digital twin system (DTS) for solar energy management. These results outline the 

comparative analysis on the performance of four machine learning (ML) algorithms (Random 

Forest (RF), Extreme Gradient Boosting  (XGBoost), Multilayer Perceptron Neural Network 

(MLPNN), and Long Short-Term Memory (LSTM)), seven-day forecasting, predicted vs actual 

validation, and forecasting predictions across three different locations. 

All results obtained follow the methodology outlined in chapter 3, using consistent preprocessing 

and evaluation metrics. All models were trained using an 80/20 train-test split, with validation 

performed through repeated runs to confirm reproducibility. 

4.2. Model Performance and Accuracy 

All four models were trained and tested using the same datasets, with initial testing using historical 

solar generation from the Information, Science and Technology (IST) building located at South 

Ridge at the Bedford Park campus. The training also used irradiance, and weather attributes (e.g., 

temperature, cloud, humidity, precipitation, etc.). Model accuracy was assessed using Root Mean 

Square Error (RMSE), coefficient of determination (R2), and Mean Absolute Error (MAE), with 

performance logs logged with these values. Table 7 summarises the average performance of each 

algorithm: 

Table 7 – Model performance of algorithms using solar generation from IST building. 

Algorithm Average RMSE Average R2 Average MAE Notes 

Random Forest 5.676 0.926 2.878868913 

Low bias with strong 

baseline accuracy. 

Tendency to average 

predictions. 

XGBoost 6.033 0.917 2.696869911 

More sensitive to 

hypermeters. Larger 

errors with lower 

predictive performance. 

MLPNN 5.717 0.925 3.059 
Minor over-smoothing, 

but good nonlinear fitting. 

LSTM 5.702 0.925 2.831193349 Best overall performance 
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As shown in table 7 all the models achieved a high accuracy of 0.917 or higher. The LSTM 

algorithm achieved the lowest MAE and RMSE, reflecting its ability to model time series dependent 

patterns. RF and MLPNN performed competitively, with RF having the highest accuracy, whilst 

XGBoost showed slightly greater variability due to boosting sensitivity. 

4.3. Seven-Day Forecasting 

The trained algorithms were used to predict the hourly solar generation of the IST building for the 

next seven days following the current day at the time. Figures 6–9 show the results from each 

algorithm: 

 

Figure 6 – Predicted 7-day forecast from Random Forest IST model. 

 

Figure 7 – Predicted 7-day forecast from XGBoost IST model. 
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Figure 8 – Predicted 7-day forecast from MLPNN IST model. 

 

Figure 9 – Predicted 7-day forecast from LSTM IST model. 

Key insight: 

• Accuracy decreased in the RF and XGBoost models beyond three days, with the last four 

days appearing to be generalised with similar values across the days. 

• The expected diurnal cycle occurred with strong midday peaks, and negligible nighttime 

outputs. Day-day variations particularly in the MLPNN and LSTM models correspond to 

recorded fluctuations in solar irradiance. This confirms the model’s responsiveness to short-

mid-term weather effects. 

4.4. Validation Against Historical Days 

To test the accuracy and generalisability of the predictions, two past weeks were randomly 

selected to compare the predictions against the actual solar generation reading from those weeks. 

All algorithms were trained and validated using the same datasets as section 4.3. The two random 

weeks selected were: 

• Week 1: 2025-03-27 00:00 - 2025-04-02 23:00 

• Week 2: 2025-07-27 00:00', 2025-08-02 23:00 
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Figures 10–17 show how well the algorithms performed: 

 

Figure 10 – Week 1 predicted vs actual for Random Forest. 

 

Figure 11 – Week 2 predicted vs actual for Random Forest. 

 

Figure 12 – Week 1 predicted vs actual for XGBoost. 

 

Figure 13 – Week 2 predicted vs actual for XGBoost. 
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Figure 14 – Week 1 predicted vs actual for MLPNN. 

 

Figure 15 – Week 2 predicted vs actual for MLPNN. 

 

Figure 16 – Week 1 predicted vs actual for LSTM. 

 

Figure 17 – Week 2 predicted vs actual for LSTM. 

Key Insights: 
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• On clear-sky days all predictions closely followed the patterns of the actual curves. 

• Slight underestimations occurred around the midday peak. 

• On days with constant changing weather patterns such as cloud cover, all algorithms could 

not perform properly. This was expected due to unpredictable factors like cloud drifting. 

During these periods, errors increased and major underestimations occurred. 

• RF and XGBoost captured drifting and rapid changing patterns better that MLPNN and 

LSTM. 

4.5. Cross-Site Comparison 

To evaluate generalisation and geographical impacts, the algorithms were used to test the model 

with three different sites all within the suburb of Bedford Park, South Australia and part of the 

Flinders University grounds: IST building, Drama (DRAMA) building, and Sturt East (STE) building. 

Each location contains its own array of solar panels as part of the Flinders University BMS but with 

different microclimatic and topographical conditions. 

The IST building is located at South Ridge (the southern half of Bedford Park campus), which is 

located on top of a steep hill, providing higher exposure and stronger wind flow. These factors may 

influence irradiance stability and temperature. The DRAMA building is located at North Ridge (the 

northern half of Bedford Park campus), which is down the hill from South Ridge and roughly 365m 

(as the crow flies) from IST. The STE building is located at the Sturt Campus, which is the 

northernmost point of the Flinders University Bedford Park grounds, 1.22 km (as the crow flies) 

from IST, and is at a lower elevation than IST and DRAMA sites. 

Although all these sites are in the same suburb, subtle variations in terrain height, slop orientation, 

shading patterns do impact solar generation and irradiance readings. 

Table 8 contains the performance metrics of each site, and figures 18- show the predictions of the 

three sites recorded at the same time: 

Table 8 – Cross-site comparison of algorithms performance metrics. 

Site Algorithm 
Average 

RMSE 

Average 

R2 

Average 

MAE 
Notes 

IST 

Random 

Forest 
5.676 0.926 2.878868913 Strong baseline. 

XGBoost 6.033 0.917 2.696869911 
Sensitive to 

hypermeters. 

MLPNN 5.717 0.925 3.059 Minor over-smoothing. 

LSTM 5.702 0.925 2.831193349 
Excellent 

generalisation. 
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DRAMA 

Random 

Forest 
3.991 0.910 1.834299 Lowest RMSE. 

XGBoost 5.862 0.914 2.601145576 Slight overprediction.  

MLPNN 4.069 0.907 2.168764 Minor bias drift. 

LSTM 4.205 0.9015 2.126342 
Consistent across 

cycles. 

STE 

Random 

Forest 
4.734 0.9048 2.200331 Stable output. 

XGBoost 5.052 0.892 2.129645 Drop in R2. 

MLPNN 4.629 0.911 2.288212 Good error control. 

LSTM 4.813 0.9017 2.282142389 Minor lag observed. 

 

 

Figure 18 – RF predicted 7-day forecast for IST building. 

 

Figure 19 – RF predicted 7-day forecast for DRAMA building. 
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Figure 20 – RF predicted 7-day forecast for STE building. 

 

Figure 21 – XGBoost predicted 7-day forecast for IST building. 

 

Figure 22 – XGBoost predicted 7-day forecast for DRAMA building. 
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Figure 23 – XGBoost predicted 7-day forecast for STE building. 

 

Figure 24 – MLPNN predicted 7-day forecast for IST building. 

 

Figure 25 – MLPNN predicted 7-day forecast for DRAMA building. 
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Figure 26 - MLPNN predicted 7-day forecast for STE building. 

 

Figure 27 - LSTM predicted 7-day forecast for IST building. 

 

Figure 28 - LSTM predicted 7-day forecast for DRAMA building. 
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Figure 29 - LSTM predicted 7-day forecast for STE building. 

Key insights: 

• Radom Forest and LSTM offered the most reliable forecast across varying terrain 

conditions. 

• Even minor differences in sites impact the sensitivity of predictive accuracy based on local 

geography and weather variability. 

• High R2 values validate the generalisability of the model architecture. 

• Accuracy can be attributed to terrain elevation and microclimatic differences. 

• XGBoost tended to slightly overfit. 

• MLPNN displayed moderate accuracy across all three sites. 

4.6. Error Analysis 

Error analysis was conducted evaluating the consistency and reliability of the predictive models. 

Model accuracy was measured using RMSE, MAE, and R2 as seen in Tables 7 and 8, supported 

by visual inspections of the output graphs to identify deviations. 

XGBoost over-predicted occasional under variable cloud conditions, whereas LSTM exhibited the 

most stable residuals. This confirmed LSTM’s capacity to learn temporal patterns. 

Terrain elevation and shading contributed to systematic bias. IST suffers from hilltop irradiance 

variability, which saw the widest spread of errors. Drama was the most consistent with predictions. 

Random Forest despite being reliable for short-term predictions it did suffer from generalisation 

and averaging values over periods longer than 3 days. 

4.7. Summary 

This chapter demonstrated the results achieved in this project by comparing four ML algorithms 

across varying site and terrain conditions. Although difference in sites is minor, they highlight the 
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impact local geography and weather variability has on the sensitivity of predictive accuracy. These 

insights are critical for scaling the DT framework to the whole Flinders University solar network, 

where environmental conditions can influence performance.   
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5. DISCUSSION 

5.1. Overview 

This chapter evaluates the significance, impact, and limitations the results presented in chapter 4 

relate to existing research. This discussion aligns the results with the project’s aim of developing a 

solar forecasting framework as part of a broader DT solar energy management system. This 

chapter evaluates the findings discovered in the model performance across sites, interprets the 

observed prediction patterns, compares the findings with existing literature, identifies the practical 

implications for future integration, and determines how the results answer the research question: 

How can AI Digital Twin Technology improve the accuracy of solar energy generation forecasting? 

5.2. Significance of Results 

As seen in chapter 4, all four models (RF, XGBoost, MLPNN, and LSTM) can effectively forecast 

solar generation using historical solar and weather data, and real-time weather data. All four model 

achieved an R2 of 0.892 or higher with RF, MLPNN and LSTM achieving the highest accuracy 

across all three sites (R2 ≈ 0.912). RF and LSTM consistently achieved the lowest RMSE and MAE 

values, demonstrating their capability of capturing nonlinear relationships and temporal dynamics 

in solar generation data. The results demonstrate strong capability in integrating these algorithms 

into a DT, validates the methodology, and confirms data-driven approaches can support 

autonomous EMS. 

Compared to previous studies by Benali et al. (2019) and Yu et al. (2019), the accuracy achieved 

in this project aligns and sometimes exceeds R2 values for similar datasets for similar uses. RF’s 

high accuracy and robustness against noise along with LSTM’s capacity to predict short-term 

forecasts and model temporal dependencies mirror other findings identified in other solar 

forecasting research. XGBoost showed slightly higher variance, indicating sensitivity to parameter 

tuning, while MLPNN performed reliably but lacks temporal awareness compared to LSTM. These 

results confirm the reliability of data-driven methods for DT technology. 

5.3. Forecasting Behaviour 

The results achieved from seven-day forecasting demonstrated that all models have the capability 

of accurately capturing diurnal generation patterns. However, minor deviations during cloudy 

conditions and sunrise/sunset transitions occurred, which was to be expected as it is difficult for the 

algorithms to capture these patterns. The LSTM network experienced the smoothest transitions 

with fewer outliers, consistent with its ability to model sequential dependencies over time. 
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Random Forest provided the lowest RMSE and comparable performance with the benefit of lower 

computational costs. Although RF is suitable for embedded or edge deployment in DT frameworks, 

it does tend to lose accuracy after three days, due to the ensemble’s inability to extrapolate the 

beyond that time, and its dependency on time scaling of data. 

Short-term forecasts remained accurate within a confidence interval of ± 6% suggesting that 

integrating these models into a hybrid approach could balance real-time performance and energy 

prediction accuracy within the operational layer of a DT. 

5.4. Terrain and Location Impacts 

Cross-site comparison revealed that topographical and microclimatic factors impact prediction 

accuracy. Since IST is positioned at the highest point above sea level compared to the other two 

sites, it experienced greater irradiance fluctuation, while Drama appeared the most stable in results 

due to balanced exposure. These findings support that local microclimates and terrain elevation 

can contribute to forecast accuracy and uncertainty. They highlight the need for site-specific model 

calibration with DTs to ensure predictive accuracy is maintained when scaling this framework for 

multiple solar arrays. 

5.5. Research Question Answered 

This project successfully answered the research question: How can AI Digital Twin Technology 

improve the accuracy of solar energy generation forecasting? 

This project confirms the feasibility of deploying a DT to produce seven-day predictions. The 

models produced an error margin of less than 6% with RF and LSTM being suitable for short-term 

predictions, particularly three days or less for RF. For a fully functional DT, it is essential to 

integrate the models with real-time data streams to complete the feedback loop. 

5.6. Limitations and Impact 

Certain limitations throughout the project impacted the results. A full seasonal coverage couldn’t be 

achieved due to the limited training period. Computational and time constraints impacted the LSTM 

model from not being fully tuned, likely impacting its performance. Some gaps in the weather and 

irradiance data required interpolation, introducing minor uncertainties. Despite these constraints, 

the outcomes remain consistent and repeatable, with each model’s reliability being validated. 

5.7. Summary 

This project contributes to a broader solar energy management DT by providing a modular Python-

based forecasting framework. This project demonstrates that AI-based forecasting models like RF 

and LSTM can accurately predict solar generation. The demonstrated models form the analytical 
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core of solar energy management DT strengthening the need for DTSs in the renewable energy 

sector an area underdeveloped in current literature.  



 

38 

6. CONCLUSIONS AND FUTURE WORK 

6.1. Summary of Findings from Results 

This project designed and implemented an AI-DT based solar forecasting framework that train and 

validates four ML algorithms – RF, XGBoost, MLPNN, and LSTM – for short-term energy 

predictions. Using historical solar generation, weather and irradiance data with real-time weather 

data three sites were tested: IST, Drama, and Sturt East. 

RF, MLPNN, and LSTM achieved the highest performance with average R2 values above 0.90 and 

RMSE below six, demonstrating strong accuracy. These results confirm that DTs can be reliable 

for solar generation predictions if implemented with ML-based frameworks. 

6.2. Project Significance 

This project successfully met its objectives by: 

1. Designing a scalable DT core for solar forecasting. 

2. Training and Validating four AI/ML based predictive models in Python. 

3. Demonstrating that AI/ML algorithms can be used to accurate forecast solar generation 

across multiple locations. 

These findings contribute to the growing research in AI-powered DTs for renewable energy 

management. This project serves as a foundation for supporting grid stability, improved renewable 

energy forecasting accuracy, and autonomous decision-making. 

6.3. Limitations 

Several limitations were encountered in the project that impacted the results: 

• LSTM requires further hyperparameter tuning for optimal performance. 

• The limited data period restricted seasonal variation and long-term validations to be 

conducted. 

Despite these limitations, the outcome remains consistent, and the methodology is structured to be 

repeatable and scalable for larger dataset and deployment. 

6.4. Future Work 

Future work should focus on optimisation, hyperparameter tuning the LSTM algorithm and 

extending the system into a fully functional DT. For proactive energy scheduling and fault 

detection, optimisation and recommendations layers should be incorporated. Using larger dataset 
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and deeper architecture can Enhance the LSTM and hybrid AI models and capture seasonal and 

spatial dependencies. The model can be deployed into a DT platform like XMPro to provide real-

time monitoring, and easier data integration. 

6.5. Final Words 

This project demonstrates that an AI-powered DT can effectively forecast future solar energy 

generation with strong accuracy. By bridging the gap between data collection and system 

virtualisation, this project establishes a practical pathway towards an intelligent, self-learning EMS. 

Continued refinement and expansions will further strengthen the role of the DT in renewable 

energy infrastructure. 
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